Satellite Navigation Mark Onyett

Objectives & Agenda

Objectives

- Understand the origins of satellite navigation
- Understand the fundamentals how satellite navigation works
- Appreciate the differences between satellite navigation systems
- Get some tips on practical Satellite Navigation use for the Private Pilot
- Understand the risks and limitations of Satellite Navigation

Agenda

- Brief history of navigation
- Overview of Satellite Navigation
- How SatNav works
- Enhancements to basic SatNav
- How we use SatNav in aviation
- Satellite Navigation Options for the PPL
- Risks and Limitations
- Future of Satellite Navigation
- Questions

History of Navigation

Overview of Satellite Navigation

- "GPS" is actually a name for the US NAVSTAR system
- There are at least 6 different Satellite Navigation systems, operated by different countries
- Most receivers today use at least the US GPS system and the Russian GLONASS system
- Collectively in aviation we use the term GNSS (Global Navigation Satellite System)
- GPS Satellites cost around \$500m to build and \$300m to launch (each)
 - Most systems have 24-30 satellites...

How it works

If only it was that simple...Pseudo Ranging

Pseudo Ranging

Lots of information is actually sent and received

Visibility of Satellites – up to 6 visible are needed

- GPS has 24 satellites (plus some spares)
- Orbit at 20,200km
- 6 orbital planes

Risks / Degradation / Errors / Limitations

- Ephemeris error
 - Satellite in the wrong place
 - +/- 0.5m
- Atmospheric / Ionospheric error
 - Civilian receivers have a model of the ionosphere on board
 - Gets to +/- 5m accuracy
 - Military ones use both frequencies to compute an error correction
- Instrument error
 - Noise, computation error
 - +/- 1m
- Multipath signals
 - Bouncing off terrain etc
 - +/- 0.5m
- DOP / Fixing error
 - Satellites close together give a low "angle of cut"
- Interference / Jamming
 - Signal is like a 20w lightbulb 15000 miles away

NOTAM INFO: NAV (CHLK GPS 16-08) GPS (INCLUDING WAAS, GBAS, AND ADSB) MAY NOT BE AVBL WI A **476NM RADIUS** CENTERED AT 360822N1173846W (BTY 214059) FL400-UNL DECREASING IN AREA WITH A DECREASE IN ALT DEFINED AS: 432NM RADIUS AT FL250 375NM RADIUS AT 10000FT 340NM RADIUS AT 4000FT AGL 253NM RADIUS AT 50FT AGL

Receivers

1989
Magellan GPS Nav 1000
First handheld
\$3,000
Single channel receiver

2017
ORG1411
\$20
Receiver and antenna in one
48 channel receiver
WAAS support

Augmentation

- "Raw" GNSS signals are good but not good enough for precision approaches for example
- There are a number of ways to enhance the signals:
- Redundancy
 - Use multiple systems (e.g. GPS and GLONASS)
 - **RAIM Receiver Autonomous Integrity Monitoring**
 - AAIM Aircraft Autonomous Integrity Monitoring (big aircraft really)

- Differential information
 - GBAS Ground Based Augmentation System potential for Cat III approaches
 - SBAS Satellite Based Augmentation System Cat 1 approaches
 - WAAS in US, EGNOS in Europe

How we use GNSS in Aviation

- As a PPL you don't have to use Satellite Navigation at all
 - VFR flying is based Dead Reckoning with ground features and maps
 - But it is very effective as a backup, especially navigating around complex airspace
- But satellite based navigation is becoming increasingly used, especially in IFR flying
- PBN (Performance Based Navigation) is the "new" ICAO standard for Area
 Navigation for ATS routes, Instrument Approaches or in designated airspace
- RNAV and RNP are the performance specifications under PBN which basically define accuracy of flight required
 - Some of the RNP standards require Satellite Navigation (e.g RNP4, RNP2, RNP1)

GPS options for the PPL - Hardware

Certified, installed GPS

- Equipment and installation is certified
- RAIM equipped
- SBAS: WAAS versions (<1.25m accuracy)
- 15 channel receiver
- Receiver and display in one
- Basic mapping included
- Updateable Navdata includes aviation waypoints

Bluetooth GPS

- Connects to Ipad / Tablet
- SBAS: WAAS / EGNOS
- 66 channel receiver

IPAD / Tablet Built In

- No extra kit (batteries)
- But may struggle with reception
- Often not SBAS

GPS options for the PPL – Tablet Applications

- Skydemon and RunwayHD are two of the market leaders
- Both offer lots of functionality
 - Vector airspace built in giving airspace warnings
 - Moving map display (Vector only for Skydemon, Raster / CAA maps for RunwayHD)
 - Graphical NOTAMs
 - Vertical profile (ADVISORY not accurate!!)
 - Flight planning and flight plan filing
 - Live PLOGing
 - Airfield plates
 - Terminal and En Route weather
 - Can be used on multiple devices e.g ipad and phone for backup

Costs

- Skydemon £89/year
- RunwayHD £99/year (including CAA 500k maps)
- Tablet ~£250

Future of GNSS

- Multiple systems
 - European Galileo half complete
 - Chinese system has 22 satellites
- Better technology
 - GPS III
 - Higher power
 - New signals & frequencies
 - Distress and Alerting system
 - Satellite to satellite cross links
 - · Spot beams for military anti jamming
- More augmentation for approaches
 - GBAS being developed for Cat III approaches
- Cheaper devices for aviation
 - Handheld
 - Integrated
 - Synthetic vision

Standard STI LPV 1				DA(H) AND ATRICE		LNAV CDFA DA/MDA(H) 700/11001		CIRCLE-TO-LANDE 08L to 08R		
DA(H) 538'(200')				D: 688'(350')		BCD: 790 (452')			ı	
_	FULL	Limited	ALS out		ALS out		ALS out	Max Kis	VI:VI:VI	
Α		RVR 750m	RVR 1200m	RVR 800m	RVR 1500m	RVR 1300m	- RVR 1500m	110	940'(602') 3000	
В	RVR							135	740 (802) 3000	
c	550m					RVR 1400m	RVR 2100m	180	1040 (7021) 3500	
D				RVR 900m	RVR 1600m	1	RVR 2 IUUM	205	1100'(762') 4000	

Advice on GNSS use for the private pilot

- Retain situational and positional awareness using a map and plog
 - CAA: "GPS must not be relied upon as a sole navigation reference in flight-critical applications"
- Understand and train on the capabilities and limitations of the equipment
 - Check databases are current
 - Cross check route and user waypoints with PLOG
- Don't fix the device so that it gets in the way of piloting
- Learn how to do a RAIM check on certified equipment
- Check NOTAMS for GPS outages / jamming trials
- Look out for HIRTAS

HIGH INTENSITY RADIO TRANSMISSION AREA (HIRTA).

Areas with a radius of 0-5NM or more are shown with name/effective altitude
(in thousands of feet AMSL)......

Backups: spare batteries, charging cables, multiple devices

Questions?

GNSS Systems

System	<u>BeiDou</u>	<u>Galileo</u>	<u>GLONASS</u>	<u>GPS</u>	<u>NAVIC</u>	<u>QZSS</u>	
Owner	<u>China</u>	<u>EU</u>	Russia	<u>United States</u>	<u>India</u>	<u>Japan</u>	
Coverage	Regional (Global by 2020)	Global	Global	Global	Regional	Regional	
Orbital altitude	21,150 km	23,222 km	19,130 km	20,180 km	36,000 km	32,000 km	
Period	12.63 h	14.08 h	11.26 h	11.97 h	1436.0m		
Number of satellites	5 geostationary orbit (GEO) satellites, 30 medium Earth orbit (MEO) satellites	24 by design, 14 operational, 4 commissioning,	28 (at least 24 by design) including: ^[16] 24 operational	31 (at least 24 by design) ^[17]	3 geostationary orbit (GEO) satellites, 5 geosynchronous (GSO) medium Earth orbit (MEO) satellites	7-satellite constellation in the future	
Frequency	1.561098 GHz (B1) 1.589742 GHz (B1- 2) 1.20714 GHz (B2) 1.26852 GHz (B3)	1.164–1.215 GHz (E5a and E5b) 1.260–1.300 GHz (E6) 1.559–1.592 GHz (E2-L1-E11)	Around 1.602 GHz (SP) Around 1.246 GHz (SP)	(L1 signal)	1176.45 MHz(L5 Band) 2492.028 MHz (S Band)		
Status	22 satellites operational, 40 additional satellites 2016-2020	18 satellites operational 12 additional satellites 2017-2020	Operational	Operational	6 satellites fully operational, IRNSS-1A partially operational		
Precision	10m (Public) 0.1m (Encrypted)	1m (Public) 0.01m (Encrypted)	4.5m – 7.4m	15m (Without DGPS or WAAS)	10m (Public) 0.1m (Encrypted)	1m (Public) 0.1m (Encrypted)	

RAIM check

- You can check RAIM
 - On a RAIM prediciton website
 - On the equipment itself

- Why might RAIM fail
 - Insufficient satellites
 - Poor geometry

Note: doesn't mean the position is inaccurate, just means its accuracy cant be assured

WAAS does not use RAIM

Garmin 430

- EPE = Estimated position error (horizontal position error in ft / m)
- DOP = Dilution of precision (scale of 1 best to 10 worst)
- HUL = Horizontal uncertainty level (99% confidence limit)

Errors – What does a 430 show. 430 RAIM page

- Is it free to use?
- How come you can use it?
- Doppler for speed?